

AGENDA

- Background and Project Scope
- Methodology
- Distributed Energy Generation (DEG)
 - Definition
 - Challenges
 - Recommendations
- Green Infrastructure (GI)
 - Definition
 - Challenges
 - Recommendations
- > Funding and Governance for TOD
- Project Challenges
- > Report Use
- Questions and Feedback

CLIENT

PROJECT SCOPE

Research sustainability strategy implementation and ways to overcome site obstacles:

DISTRIBUTED ENERGY GENERATION (DEG)

DEG is the generation of electricity from parallel and stand-alone units located within the electric distribution system at or near the end user.

- Solar Photovoltaic
- Microturbine
- Fuel Cell
- Combined Heat and Power (CHP)

GREEN INFRASTRUCTURE (GI)

GI refers to strategies for handling stormwater at the source before it enters the sewer system.

- Vegetated Swales
- Permeable Pavements
- Green Roofs
- Rain Harvesting

BACKGROUND

PT Barnum (Eastside) Train Station Eastside Development Corridor

METHODOLOGY

PHASE II PHASE III PHASE III

STRATEGY

FEASIBILITY

RECOMMENDATIONS

- DISTRIBUTED ENERGY GENERATION
- GREEN INFRASTRUCTURE

RESEARCH METHODS

Literature Review

Case Studies

Interviews

- ENVIRONMENTAL JUSTICE
- FUNDING
- GOVERNANCE

RESEARCH METHODS

Literature Review

Case Studies

Interviews

ENERGY GENERATION

- Cost Analysis
- Environmental Justice
- Funding
- Governance

GREEN INFRASTRUCTURE

- Cost Analysis
- Environmental Justice
- Funding
- Governance

DISTRIBUTED ENERGY GENERATION

STRATEGIES	BENEFITS	CHALLENGES
Solar Photovoltaic (PV)	Renewable Energy Source	High installation costs Intermittency Site-specific conditions
Microturbine Fuel Cell	No intermittency Scalable systems to meet kW demand Fuel flexibility No intermittency Scalable systems to meet kW	High installation costs Operations and Maintenance Costs High installation costs Operations and Maintenance costs
	demands Fuel Flexibility Coconcration of boot and	High installation socts
Combined Heat and Power (CHP)	Cogeneration of heat and power Increased system efficiency	High installation costs Demand side disparity between heat and power. Operations and Maintenance costs

(California Energy Commission, 2004)

DEG RECOMMENDATIONS

Establish an energy consumption baseline for future comparison

STRATEGIES	RECOMMENDATIONS
Solar Photovoltaic (PV)	Utilize Solar PV systems to meet residential average demand of ~1 kW*
Microturbine and CHP	Utilize Microturbine CHP systems to meet the estimated average commercial office building demand of ~ 24 kW*
Fuel Cell and CHP	Utilize Fuel Cell CHP systems to meet the estimated average commercial office building demand of ~ 24 kW*
Environmental Justice	Utilize the EPA Environmental Justice grant to advertise the benefits of implementing DEG
Funding	Through advertising from EJ, encourage residential and commercial adaptation to DEG so that financial incentives could be fully realized
Governance	Appoint an Energy-Funding Liaison Officer for the East Bridgeport TOD site

^{*} Figures calculated based on data from the Energy Information Administration and The National Renewable Energy Laboratory PV Watts Calculator

GREEN INFRASTRUCTURE

STRATEGIES	BENEFITS	CHALLENGES
Permeable Pavement	Reduces the quantity and flow rate of stormwater runoff Reduces volume, flow rate and pollutant congestion of stormwater runoff	Installation and maintenance are time consuming Cost
Vegetated Swale	Reduces the quantity and flow rate of stormwater runoff Aesthetically pleasing	Maintenance Require allocation of land
Green Roof	Reduces the quantity and flow rate of stormwater runoff Prevents heat island effect Natural carbon capture by roof vegetation	Maintenance Cost
Rain Harvesting	Reduces the quantity and flow rate of stormwater runoff Can be used for irrigation and landscaping	Maintenance Disparity between demand and availability of rainwater

GI

RECOMMENDATIONS

STRATEGIES	RECOMMENDATIONS	
Permeable Pavements	Designate the development corridor as Green Infrastructure Zone and	
Vegetated Swale	utilize GI strategies in existing and new developments Design and conduct a measurement plan for CSO at sewer intake and outfalls	
Green Roofs		
Rain Harvesting		
Environmental Justice	Incentivize the upgrade and update of current Bridgeport GIS tools for data collection	
	Determine the most vulnerable regions within TOD vicinity	
	Develop a list from which it prioritizes potential stormwater retrofits within TOD vicinity	
Funding	Endorse a creative financing strategy and request that DOT allocates a percentage of their construction costs to Green Infrastructure	
Governance	Incentivize zoning regulations through expedited permitting and tax exemptions	

PROJECT CHALLENGES

Finding Bridgeport specific data and implementing at the local level

DISTRIBUTED ENERGY GENERATION

Average Demands calculated for State and Regional consumption

- Energy Information Administration (EIA)
- National Renewable Energy Laboratory (NREL) PV Watts Calculator

GREEN INFRASTRUCTURE

Estimated CSO volumes calculated using data from Save the Sound, a non-profit environmental advocacy group

No correlation between rainfall data and CSO occurrences

REPORT USE

- 1. Supplement to RPA knowledge base
 - Provide background and benefits of recommended strategies
- 2. Provides information on existing framework for Consortium members
 - Governance
 - Stakeholders
 - Laws, Regulations, and Codes
 - Funding Options
 - State Funds
 - Federal Funds

Thank You

Questions

